IV B.Tech - II Semester – Regular Examinations – MAY 2023

HYBRID ELECTRIC VEHICLES (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1. a)	List out the advantages of electric vehicles over conventional vehicles.	L1	CO1
1. b)	Define Tractive effort.	L1	CO1
1. c)	List the electric components used in hybrid vehicles.	L1	CO3
1. d)	Recall the disadvantages of lead acid battery.		CO4
1. e)	Briefly describe the significance of power electronics in electric vehicles.	L1	CO5

$\mathbf{PART} - \mathbf{B}$

			BL	СО	Max. Marks
UNIT-I					
2	a)	Discuss the evolution of hybrid electric vehicles.	L2	CO2	6 M

BL – Blooms Level CO – Course Outcome

	b)	Dariya & avalain the dynamic aquation	10	CO2	6 M
	b)	Derive & explain the dynamic equation	L2	02	6 M
		of an electric vehicle.			
	<u> </u>	OR			
3	a)	Discuss social and environmental	L2	CO2	6 M
		impacts of electric vehicles.			
	b)	Write a short note on vehicle movement.	L2	CO2	6 M
		UNIT-II			
4	a)	Explain the concept of Hybrid Electric	L2	CO2	6 M
		drive trains with a neat sketch.			
	b)	Explain the performance of an electric	L2	CO2	6 M
		vehicle.			
	1	OR		1	
5	a)	Draw and explain the topologies of	L2	CO2	6 M
		hybrid electric drive train.			
	b)	Discuss the tractive effort in normal	L2	CO2	6 M
		driving in electric vehicles.			
				11	
		UNIT-III			
6	a)	Analyse the various controls in DC	L4	CO3	6 M
		motor drives.			
	b)	Interpret the control of Induction Motor	L3	CO3	6 M
		drives.			
	1	OR	I	1 1	
7	a)	Illustrate the PMSM drives working and	L3	CO3	6 M
		operation in electric vehicles.			
	b)	Demonstrate the SRM drives working in	L3	CO3	6 M
		electric vehicles.			

UNIT-IV					
8	a)	Compare lead-acid, Nickel and Lithium-	L2	CO4	6 M
		ion batteries.			
	b)	Illustrate the fuel cell system	L3	CO4	6 M
		characteristics.			
		OR			
9	a)	Explain the working and operating	L2	CO4	6 M
		principle of fuel cell.			
	b)	Illustrate the hybridization of energy	L3	CO4	6 M
		storage in battery and ultra-capacitor.			
				·	
		UNIT-V			
10	a)	Demonstrate the AC/DC conversion in	L3	CO5	6 M
		electric vehicles.			
	b)	Analyse the thermal management of	L4	CO5	6 M
		HEV using Power Electronics.			
OR					
11	a)	Demonstrate the DC/AC conversion in	L3	CO5	6 M
		electric vehicles.			
	b)	Analyze electronic devices used for	L4	CO5	6 M
		control and distribution of electric			
		power.			